位置:成果数据库 > 期刊 > 期刊详情页
结合二部图投影与排序的协同过滤
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学技术大学计算机科学与技术学院,安徽合肥230027
  • 相关基金:国家自然科学基金项目(60775037)资助; 国家“八六三”高技术研究发展计划项目(2009AA01Z132)资助
中文摘要:

协同过滤是推荐系统中应用最为广泛的方法.提出一类基于二部图一维投影与排序相结合的协同过滤算法,文中采用结构相似进行二部图投影并利用随机游走对节点排序.该方法不仅可以防止冷启动,具有较高准确度,且可扩展性良好.另外,该算法可以避免低覆盖率造成的推荐不准确.算法可以有两类不同的实现,分别是基于项协同过滤的项排序算法和基于用户协同过滤的用户排序算法,在标准数据集MovieLens上的测试表明了算法的有效性.

英文摘要:

Collaborative Filtering is the most widely used approach in recommender systems. This paper proposes a novel collaborative filtering approach through combining bipartite graph projection and ranking. In our approach bipartite graph is projected based on structural similarity and random walk is used to rank the nodes. This method can not only deal with "cold start problem" to get high precision but also have good scalability. Moreover,our method can generate the rank based on the similarity between all user-item pairs,thus making it avoids inaccuracy caused by low coverage rate. The algorithm is tested in both the item-collaborative-based item ranking way and the user-collaborative-based user ranking way. The experimental results obtained on a benchmark dataset Movielens clearly show the effectiveness of our proposed approach.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212