位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的污泥水解液合成PHA的多参数敏感性分析
  • ISSN号:0253-2468
  • 期刊名称:《环境科学学报》
  • 时间:0
  • 分类:X1[环境科学与工程—环境科学] X703[环境科学与工程—环境工程]
  • 作者机构:[1]哈尔滨工业大学城市水资源与水环境国家重点实验室,哈尔滨150090, [2]湖南省建筑设计院,长沙410011
  • 相关基金:教育部新世纪优秀人才计划(No. NCET-12-0156);城市水资源与水环境国家重点实验室开放课题项目(No. 2012TS01);国家自然科学基金(No. 51378142)
中文摘要:

本文采用多参数敏感性分析方法对影响污泥水解液合成PHA产量的参数进行分析.在实验数据的基础上,利用BP神经网络建立了PHA的产量预测模型.通过与真实试验结果的对比,验证了预测模型的精确度.根据训练完成的神经网络模型中的各参数变量到目标的权值和阈值,利用Garson算法定量得到各参数变量对于目标的参数敏感性系数数值.结论表明:基于BP神经网络技术建立的预测模型具有较高的可信度,多参数敏感性分析方法可评估多因素同时变化对PHA产量的影响,具有较高的实用价值.

英文摘要:

Multi-parameter sensitivity analysis method was proposed to analyze the parameters affecting the yield of Polyhydroxyalkanoate (PHA) utilizing sludge hydrolysis liquid. Based on experiment dates, a model based on back propagation neural network (BPNN) used for predicting the yield of PHA was set up. The accuracy of this predicted model was verified by contrastive analysis between theoretical and laboratorial data. On the basis of weights and threshold value of each variable parameter gained in the trained BPNN, Garson algorithm was used for calculating the parameter sensitivity coefficient. Results show the prediction model built by BPNN has high credibility, and multi-parameters sensitivity analysis method can evaluate the impact of multi-factor on PHA production yield therefore has greater practical value.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《环境科学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院生态环境研究中心
  • 主编:汤鸿霄
  • 地址:北京2871信箱
  • 邮编:100085
  • 邮箱:hjkxxb@rcees.ac.cn
  • 电话:010-62941073
  • 国际标准刊号:ISSN:0253-2468
  • 国内统一刊号:ISSN:11-1843/X
  • 邮发代号:82-625
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰地学数据库,荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国英国皇家化学学会文摘,中国北大核心期刊(2000版)
  • 被引量:56074