位置:成果数据库 > 期刊 > 期刊详情页
基于信息融合的数据挖掘方法在公司财务预警中的应用
  • ISSN号:1003-207X
  • 期刊名称:《中国管理科学》
  • 时间:0
  • 分类:F224[经济管理—国民经济]
  • 作者机构:[1]中国科学院大学管理学院,北京100190, [2]中国科学院虚拟经济与数据科学研究中心,北京100190, [3]中国科学院大数据挖掘与知识管理重点实验室,北京100190, [4]中国科学院科技政策与管理科学研究所,北京100190, [5]英国诺丁汉特伦特大学诺丁汉商学院,诺丁汉伯顿街NG14BU
  • 相关基金:国家自然科学基金资助项目(71071151,71471169)
中文摘要:

目前越来越多的数据挖掘方法被用于风险预警中,决策树、支持向量机、神经网络、Logistic回归等方法在风险预警中都表现出了较好的特性和预警效果,但是不同数据挖掘分类方法得到的结果不同,往往导致预警结果的不一致,因此也会存在一定风险。本文引入信息融合技术对不同数据挖掘分类方法得到的结果进行融合处理得到最优的结果,解决了不同数据挖掘方法得到的结果不一致问题。文章在SVM和Logistic回归的数据挖掘模型基础上建立基于信息融合的公司财务预警模型,提高了财务预警准确率,并且保留了原数据挖掘方法在分类预测上的优势。在实证研究中,论文选取了中国制造业的上市公司作为研究对象,在SVM和Logistic回归两种数据挖掘模型的基础上利用信息融合方法建立了财务预警模型,实证结果表明,基于信息融合的数据挖掘方法的预测准确率要高于单独的SVM和Logistic回归两种方法。

英文摘要:

Different data mining methods for classification can produce different results.However, "one time" data mining process cannot often obtain a well support decision,so we introduce information fusion technique to fuse the different results to gain an optimal solution.In this paper,information fusion technique is used to build a finance early-warning model based on data mining methods such as SVM and Logistic model,which can integrate the respective strengths from different data mining methods to improve the prediction accuracy rate,it fuses the different data mining results to gain the prediction results for reliable decision.The real dataset of Chinese listed manufacturing companies is selected to predict the finance risk with information fusion technique based on SVM and Logistic model,and a higher prediction accuracy than those of the two methods respectively is obtained.

同期刊论文项目
期刊论文 25 会议论文 14 获奖 8
同项目期刊论文
期刊信息
  • 《中国管理科学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国优选法统筹法与经济数学研究会 中科院科技政策与管理科学研究所
  • 主编:蔡晨
  • 地址:北京海淀区中关村北一条15号(北京8712信箱)
  • 邮编:100190
  • 邮箱:zgglkx@casipm.ac.cn
  • 电话:010-62542629
  • 国际标准刊号:ISSN:1003-207X
  • 国内统一刊号:ISSN:11-2835/G3
  • 邮发代号:82-50
  • 获奖情况:
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国人文社科核心期刊,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:25352