考虑具耗散项的一维磁流体力学方程组Cauchy问题.对于非耗散情形证明了如果初始能量和磁场强度弱于声波的能量,则Cauchy问题的光滑解在有限时间内破裂;对于耗散情形,如果初始能量、磁场强度和耗散强度弱于声波的能量,则Cauchy问题的光滑解在有限时间内破裂,而且给出了生命区间估计.
The Cauchy problem for one dimensional hydromagnetic dynamics with dissipative terms is concerned with. For the case of non-dissipation, it is shown that the smooth solutions will develop shocks in the finite time, if the initial amounts of entropy and the ‘ magnetic field' is smaller than that of sound waves. And for the case of dissipation, the initial amounts of entropy, dissipative effect and the ‘ magnetic field' in each period is maller than that of sound waves. Then the smooth solutions must blow up in the finite time.Moreover, the life-span of smooth solution is given.