位置:成果数据库 > 期刊 > 期刊详情页
群智能算法优化神经网络在网络安全的应用
  • ISSN号:1004-373X
  • 期刊名称:《现代电子技术》
  • 时间:0
  • 分类:TN926-34[电子电信—通信与信息系统;电子电信—信息与通信工程] TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:重庆电子工程职业学院,重庆401331
  • 相关基金:国家自然科学基金(60873139)
作者: 何欢
中文摘要:

研究了一种群智能优化神经网络算法的网络流量检测模型。使用QAPSO算法对RBF神经网络的基函数中心、基函数的宽度以及输出层与隐含层的连接权值进行优化。通过实例对该文研究的检测模型进行分析,使用采集的数据对网络流量识别系统进行训练和性能测试。将该文的研究方法和基于常规PSO算法、基于HPSO算法进行对比,结果表明,该文研究的检测方法具有更快的识别速度以及更好的识别准确率,避免了出现陷入局部最优解的情况发生。

英文摘要:

The application of swarm intelligence optimizing neural network in network security and a network traffic detec- tion model based on neural network algorithm are studied in this paper. QAPSO algorithm is Used to optimize the basis function center and base function width of RBF neural network, and the connection weights of the output layer and the hidden layer as well. The detection model studied in this paper is analyzed by means of an example. The collected data is used to train the net- work traffic identification system and test its performance. The method researched in this paper is compared with the algorithms based on the conventional PSO and HPSO. The results show that the detection method has a faster recognition speed and better recognition accuracy, and can avoid the occurrence of local optimal solutions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《现代电子技术》
  • 北大核心期刊(2014版)
  • 主管单位:陕西省信息产业厅
  • 主办单位:陕西电子杂志社 陕西省电子技术研究所
  • 主编:张郁(执行)
  • 地址:西安市金花北路176号陕西省电子技术研究所科研生产大楼六层
  • 邮编:710032
  • 邮箱:met@xddz.com.cn
  • 电话:029-93228979
  • 国际标准刊号:ISSN:1004-373X
  • 国内统一刊号:ISSN:61-1224/TN
  • 邮发代号:52-126
  • 获奖情况:
  • 中国科技核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊,中国北大核心期刊(2014版)
  • 被引量:37245