位置:成果数据库 > 期刊 > 期刊详情页
交换整环上矩阵模之间保幂等的线性映射及其应用
  • 期刊名称:徐金利, 王金良, 曹重光, 交换整环上矩阵模之间保幂等的线性映射及其应用, 黑龙江大学自然科学学报
  • 时间:0
  • 分类:O151.21[理学—数学;理学—基础数学]
  • 作者机构:[1]黑龙江大学数学科学学院,哈尔滨150080
  • 相关基金:国家自然科学基金资助项目(10671026)
  • 相关项目:矩阵几何及有关的代数问题
中文摘要:

设R是一个含有单位元1的交换整环,Mn(R)是R上的n×n矩阵模,用Pn(R)记Mn(R)中所有幂等阵构成的集合。若线性映射f:Mn(R)→Mn(R)满足f(Pn(R))Pm(R),则称/是保幂等的线性映射。用R(n,m)表示所有这样保幂等的线性映射的集合。用生成元的定义关系来刻画当n,m≥2,R≠F2时R(n,m)中算子的结构,作为它的应用,得到保矩阵逆的算子结构。

英文摘要:

Let R be a commutative integral domains with 1, and Mo (R) be the tt x n matrix modules over R. Let Pn (R) be the subset ofMn(R) consisting of all idempotent matrices. A linear mapf:Mn(R)→Mn(R) is said to preserve idempotence iff(P,(R)) CPm(R). Denote by Rn(n,m) the set of all such linear maps. The structure of R (n,m) is characterized by defining relations of generators when n, m≥2 and R ≠ F2. As its applications, the structure of operators preserving inverses of matrices are described.

同期刊论文项目
期刊论文 67 会议论文 19 获奖 4
同项目期刊论文