位置:成果数据库 > 期刊 > 期刊详情页
一种基于PSVM的多类分类方法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]南京师范大学计算机科学系,南京210097
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under GrantNo.40771163).
中文摘要:

为克服传统支持向量机不能处理交叉数据分类问题,Mangasarian等人提出一种新的分类方法PSVM,该方法可有效解决交叉数据两分类问题,但用PSVM解决多分类问题还报道不多。为此,提出一种基于PSVM的多分类方法(M—PSVM),并探讨训练样本比例与分类精度之间关系。在UCI数据集上的测试结果表明,M—PSVM与传统SVM分类性能相当,且当训练样本比例小时,效果更优;此外,在入侵检测数据集上的初步实验表明,M—PSVM可有效改进少数类的分类精度,因而为求解数据不平衡下的分类问题提供了新的思路,进一步的实验验证正在进行。

英文摘要:

Mangasarian and Wild proposed a new classification method PSVM to handle the classification of cross-data that the traditional support vector machine couldn't overcome,but very litter work has been done for the multi-classification using PSVM. In this paper,based on PSVM,we propose a new multi-classification method(M-PSVM),and discuss the relationship between the rate of train data and the accuracy.Experimental results on UCI show that,the classification effect of M-PSVM method is as well as C-SVM,sometimes the smaller training data is,the better performance M-PSVM has;Experimental results in the intrusion detection datasets show that,M-PSVM can effectively improve the classification accuracy of the very small classes,hence which provides a new strategy for solving unbalanced data classification,further experimental testing is ongoing.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887