采用一种新的方法来研究创意产业集群网络中缄默知识的共享与转移,结合动力学和复杂网络对缄默知识在不同结构集群网络中的共享与转移做了数值仿真和分析。结果显示缄默知识的共享与转移速度在随机结构、BA结构、小世界结构和规则结构的集群网络中依次递减,且焦点个体对BA结构集群网络中的缄默知识的共享与转移起着重要的作用。
The paper adopts a new approach to study tacit knowledge sharing and shift by combining knowledge of dynamics and complex networks. It also makes a numerical simulation of tacit knowledge sharing and shift in creativity industry clustering network with different structures. A comparative analysis based on it reveals that the speed of tacit knowledge sharing and shift in creativity industry clustering network diminishes with the subsequent structures in turn: random structure, BA structure, small-world structure and regular structure. The study also shows that the central figures play a vital role in creativity industry clustering network with BA structure.