空间碎片高精度测量是提升碎片目标精密监测与预警的重要途径。作为空间碎片地基光电探测技术,激光测距具有高精度测量特性。根据空间碎片激光测距特点以及瞄准国际技术发展,研制高性能高功率激光器、突破高效率激光信号探测等,国内首先建立了60 cm口径空间碎片激光测距系统,实现了碎片目标测量距离从500~2 600 km,目标截面积从小于0.5 m2到大于10 m2,具备了空间碎片常规测量能力。根据空间碎片激光测距方程,结合实际激光回波数据,综合考虑空间碎片过境时段等,构建了地基激光测距系统探测仿真模型,研究了60 cm口径空间碎片激光测距系统探测能力,可对距离1 000 km、直径大于50 cm碎片目标进行观测,与实际测量结果相符,验证了仿真模型的合理性,为未来地基激光测距系统高效运行及测量装备建设与探测效能评估奠定了基础。
High precise measurement of space debris is an important way to improve the precise surveillance and collision prediction for space debris. As one of space debris measuring technology based on the ground-based electro-optic telescopes, laser ranging is the most accurate. According to characteristic of laser ranging to space debris and aiming at the international technical development, through the development of high power laser system and the breakthrough of high efficiency laser signal detection, the space debris laser ranging system with the aperture of 60 cm telescope was set up as the pioneer in the development of laser measurement to space debris in China. The routine laser measurement of space debris were implemented with the measured distance from 500 km to 2 600 km, cross section from less than 0.5 m2 to more than 10 m2. According to the laser ranging link equation of space debris, combining with the statistic of laser echoes, and considering the sunlight arcs of space debris orbit when passing through the ground station, the detection simulation model of ground-based laser ranging system were constructed. The evaluation of detected ability of space debris laser ranging system with 60 cm aperture telescope was also performed with the capability of measuring debris at the distance of 1 000 km and diameter of more than 50 cm which accorded with the actual measurement results. The simulation models of laser ranging to space debris will lay the foundation for the ground-based laser ranging system with high efficient running and development of observation equipment and evaluation of detection efficiency in future.