位置:成果数据库 > 期刊 > 期刊详情页
应用图像局部特征和全局特征对比的显著性检测模型
  • ISSN号:1000-1220
  • 期刊名称:《小型微型计算机系统》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]长沙理工大学计算机与通信工程学院,长沙410114, [2]南京理工大学计算机科学与工程学院,南京210094
  • 相关基金:国家自然科学基金青年项目(61402053)资助;湖南省科技计划项目(2014SK3080)资助;湖南省教育厅优秀青年项目(148005)资助
中文摘要:

针对现有显著性检测模型准确度不高的问题,提出一种应用局部特征和全局特征对比的显著性检测模型.该算法首先使用简单的线性迭代聚类(Simple Linear Iterative Clustering,SLIC)分割算法将图像预分割为若干紧凑的超像素,选取边界区域集并计算所有超像素的边界权重;然后计算颜色和纹理特征的局部对比度得到局部显著图,利用全局特征的独特性,空间分布特性得到全局显著图;最后采用求和乘积(Sumand Product,SP)方法将局部和全局显著图融合得到最终的显著图.在Achanta测试集上进行对比分析,实验结果表明本文算法能更准确地检测出显著区域,与其它5种算法相比具有较大的优势.

英文摘要:

Considering the low accuracy of existing saliency detection model, this paper presents a model which uses local feature and global feature contrast to extract saliency area. First, the algorithm uses SLIC ( Simple Linear Iterative Clustering ) segmentation meth- od to segment the image into several compact super pixels and select the boundary area set to calculate the boundary weighting param- eter for each super pixel. Then the local saliency map is obtained by calculating the local contrast of color and texture features and the global saliency map is obtained by using the global feature uniqueness and spatial distribution characteristics. Finally, a new method SP (Sum and Product) is designed to integrate the local and global saliency map to get the final saliency map. The experimental result on the Achanta database demonstrates that the proposed algorithm outperforms than other 5 visual saliency detection methods in terms of accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《小型微型计算机系统》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院沈阳计算技术研究所
  • 主编:林浒
  • 地址:沈阳市浑南新区南屏东路16号
  • 邮编:110168
  • 邮箱:xwjxt@sict.ac.cn
  • 电话:024-24696120 024-24696190-8870
  • 国际标准刊号:ISSN:1000-1220
  • 国内统一刊号:ISSN:21-1106/TP
  • 邮发代号:8-108
  • 获奖情况:
  • 中国自然科学核心期刊,中国科学引文数据库来源期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23212