位置:成果数据库 > 期刊 > 期刊详情页
在影响力最大化问题中寻找种子节点的替补节点
  • ISSN号:0254-4164
  • 期刊名称:《计算机学报》
  • 时间:0
  • 分类:TP399[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:山东大学计算机科学与技术学院,济南250101
  • 相关基金:国家自然科学基金(61272240,61103151)资助
作者: 马茜, 马军
中文摘要:

在线社会网络的发展为市场营销提供了新的机遇和挑战.对于广告投放者来说,面临的问题是如何从一个有n个用户的社会网络中,

英文摘要:

The development of online social networks provides new opportunities and challenges for viral marketing. For a social network with n user-nodes, the advertisers face an important problem, i. e. , how to select k (0〈k〈〈n) influential nodes called seeds, once they become active because of the rewards or free samples, probably the number of the users who know or buy their products is the maximum at the end of diffusion through the word-of-mouth effects. This problem is also called Influence Maximization, or IM for short. Currently in the study of IM problem it is usually assumed that the k selected seeds can be activated. However, maybe there are t(0〈t≤k) seeds that cannot be activated for various reasons in practice. In this situation a new research issue is how to reselect t substitutes to replace the inactive seeds. In this paper, we name this problem as Substitutes Discovery problem in Influence Maximization, or SDIM for short. The problem of SDIM is beneficial to solve the practical problems in marketing, and help advertisers to complete the marketing target more smoothly. For this purpose, we first give a formal definition on SDIM, and propose an optimization function for the problem solving. We prove that SDIM is NP-Hard, and show that our proposed function is of approximation guarantee in developing greedy algorithms for SDIM. In the approach on SDIM, we first filter the nodes according to the scale-free property of social networks and reserve nodes with high degree as candidates. Then we propose three algorithms for SDIM respectively, i. e. , (1) the Global Static Greedy (GSG) algorithm which iust selects t substitutes; (2) the Greedy In Advance (GIA) algorithm which selects t'(t'≥t) substitutes in case of there are still inactivated seeds in the substitutes and (3) All Static (AS) algorithm which can improve the efficiency of GSG. As the running time of GSG is unacceptable, we optimize it with the CELF strategy and we call it GSG-CELF in the experiments.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国计算机学会 中国科学院计算技术研究所
  • 主编:孙凝晖
  • 地址:北京中关村科学院南路6号
  • 邮编:100190
  • 邮箱:cjc@ict.ac.cn
  • 电话:010-62620695
  • 国际标准刊号:ISSN:0254-4164
  • 国内统一刊号:ISSN:11-1826/TP
  • 邮发代号:2-833
  • 获奖情况:
  • 中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国数学评论(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:48433