位置:成果数据库 > 期刊 > 期刊详情页
基于MapReduce的高能物理数据分析系统
  • ISSN号:1000-3428
  • 期刊名称:《计算机工程》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院高能物理研究所,北京100049, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金资助重点项目(90912004)
中文摘要:

将MapReduce思想引入到高能物理数据分析中,提出一个基于Hadoop框架的高能物理数据分析系统。通过建立事例的TAG信息数据库,将需要进一步分析的事例数减少2-3个数量级,从而减轻I/O压力,提高分析作业的效率。利用基于TAG信息的事例预筛选模型以及事例分析的MapReduce模型,设计适用于ROOT框架的数据拆分、事例读取、结果合并等MapReduce类库。在北京正负电子对撞机实验上进行系统实现后,将其应用于一个8节点实验集群上进行测试,结果表明,该系统可使4×10-6个事例的分析时间缩短23%,当增加节点个数时,每秒钟能够并发分析的事例数与集群的节点数基本呈正比,说明事例分析集群具有良好的扩展性。

英文摘要:

This paper brings the idea of MapReduce parallel processing to high energy physics data analysis, proposes a high energy physics data analysis system based on Hadoop framework. It significantly reduces the number of events that need to do further analysis by 2-3 classes by establishing an event TAG information database, which reduces the I/O volume and improves the efficiency of data analysis jobs. It designs proper MapReduce libs that fit for the ROOT framework to do things such as data splitting, event fetching and result merging by using event pre-selection model based on TAG information and MapReduce model of event analysis. A real system is implemented on BESIII experiment, an 8-nodes cluster is used for data analysis system test, the test result shows that the system shortens the data analyzing time by 23% of 4x l06 event, and event number of concurrence analysis per second is higher than cluster nodes when adding more worker nodes, which explains that the case analysis cluster has a good scalability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华东计算技术研究所 上海市计算机学会
  • 主编:游小明
  • 地址:上海市桂林路418号
  • 邮编:200233
  • 邮箱:ecice06@ecict.com.cn
  • 电话:021-64846769
  • 国际标准刊号:ISSN:1000-3428
  • 国内统一刊号:ISSN:31-1289/TP
  • 邮发代号:4-310
  • 获奖情况:
  • 1999~2000、2001~2002年度信息产业部优秀期刊奖,2003-2004、2005-2006年度信息产业部电子精品科技...,2007-2008、2009-2010年度工业和信息产业部电子精...,012年度中国科技论文在线优秀期刊一等奖,2013年度中国科技论文在线优秀期刊二等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:84139