位置:成果数据库 > 期刊 > 期刊详情页
海量分级存储系统中磁带访问性能优化
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院高能物理研究所计算中心,北京100049, [2]中国科学院大学,北京100049
  • 相关基金:国家自然科学基金资助重点项目(No.90912004).
中文摘要:

为了提高进化数据流的聚类质量,提出基于半监督近邻传播的数据流聚类算法(SAPStream),该算法借鉴半监督聚类的思想对初始数据流构造相似度矩阵进行近邻传播聚类,建立在线聚类模型,随着数据流的进化,应用衰减窗口技术对聚类模型适时做出调整,对产生的类代表点和新到来的数据点再次聚类得到数据流的聚类结果。对数据流进行动态聚类的实验结果表明该算法是高质有效的。

英文摘要:

In order to improve the clustering quality of evolving data stream, this paper introduces a new data stream clustering algorithm, clustering over data Stream based on Semi-supervised Affinity Propagation (SAPStream), this algorithm calculates the similarity matrix of the initial data with the idea of semi-supervised, executes AP cluster, and then builds online clustering model. With the evolution of the data stream, the clustering model adjusts using decay windows technology, and the data stream clustering results are got by executing cluster again over the exemplars and new arrival data points. SAPStream can analyze and deal with large-scale evolving data stream. Its performance is tested by using both real datasets and synthetic datasets. Experi- mental results show this algorithm achieves a higher quality of clustering.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924