基于n为正整数,φ(n)为Euler函数,s(n^t)为Smarandache函数的条件下,利用高效的数论相关方法和Smarandache函数的性质,研究了数论方程φ(n)=s(n^t)。在前人分别对沪1,2,3,4,5,6,7时都进行了求解、研究和讨论的背景下,选择在t=9时,对数论方程φ(n)=s(n^9)进行求解和研究。利用对n^9进行素因子分解,再对正整数n的素因数P,以及P在n中的次数Э分别进行详细地讨论,将一个十分复杂的数论方程φ(n)=s(n^9),分别化解成各个简单的等式,从而求得方程φ(n)=s(n^9)的整数解n=1,且方程有且仅有此解。同时在计算过程中,发现并指出一篇参考文献中的一个错误,通过缜密地计算,给出自己的结果。
Based on a positive integer n, the Euler function φ(n) and the Smarandanche Function s(^nt), this paper applies the efficient corresponding Number Theory methods and the nature of the Smarandache Function to solve the number theory equation φ(n) = s(n^t). In the background of that the number theory function equation φ(n) = s (nt) is discussed in cases of t = 1,2,3,4,5,6,7, we study case of t =9. With t =9, we make n^9 a prime factoriza- tion. If p is one prime factor of n, Э is the degree of p in n ,the difficult number theory equation φ(n) = s(n^9)can be reduced to many easier equations. Then the only solution n = 1 of the number theory equation φ(n) = s(n^9) is obtained. Simultaneously, we find out a mistake in a refereneo hv rnrof111