位置:成果数据库 > 期刊 > 期刊详情页
基于特征筛选方法预测不同离子通道活性的芋螺毒素
  • ISSN号:1001-9626
  • 期刊名称:《生物数学学报》
  • 时间:0
  • 分类:Q612[生物学—生物物理学]
  • 作者机构:[1]电子科技大学生命科学与技术学院神经信息教育部重点实验室,四川成都610054, [2]河北联合大学理学院基因组学与计算生物学中心,河北唐山063000
  • 相关基金:国家自然科学基金(No.61202256,No.61301260,No.6I100092);中央高校基本业务费(ZYGX2012J113)
中文摘要:

芋螺毒素是一种具有丰富序列多样性且富含二硫键的多肽.因其能够特异性地结合离子通道,阻断神经冲动的传递,芋螺毒索又具有极大的潜在药用价值.面对庞大的芋螺毒素种类,需借助理论的手段和方法来进行研究,从而降低实验成本,为实验做出理论指导.本文基于二项式分布结合支持向量机算法对芋螺毒素离子通道活性类型进行了预测,jackknife交叉验证的总体精度和平均精度分别达到87.5%和86.8%.结果表明,本文所建模型能够用于芋螺毒素的离子通道活性预测,为基于芋螺毒素新药物的进一步开发提供帮助和理论依据.

英文摘要:

Conotoxins are small disulfide-rich peptide toxins and have an exceptional di- versity of sequences. Because they are able to specifically bind to ion channels and interfere with neurotransmission, they have become excellent pharmacological candidates in drug design. In order to save experimental cost and time, it's necessary to theoretically analyze the possible func- tions of newly sequenced conotoxins. In this paper, a novel method based on binomial distribution and support vector machine (SVM) was developed to predict the types of ion-channel targeted conotoxins. Our method achieved an overall accuracy of 87.5% with an average accuracy of 86.8% for three types of ion channel-targeted conotoxins classification in the jackknife cross-validation test, which are superior to that of other state-of-the-art classifiers. These results suggest that the proposed method will provide important instructions for theoretical and experimental research on conotoxins.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《生物数学学报》
  • 北大核心期刊(2008版)
  • 主管单位:中国数学会
  • 主办单位:中国数学会生物数学学会
  • 主编:陈兰荪
  • 地址:辽宁省鞍山师范学院158号
  • 邮编:114007
  • 邮箱:smbjbm@tom.com
  • 电话:0412-2960893
  • 国际标准刊号:ISSN:1001-9626
  • 国内统一刊号:ISSN:34-1071/O1
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版)
  • 被引量:5686