针对作物冠层高大、枝叶茂密的情况,现有的施药机具存在雾滴穿透性能差、药液沉积不均匀、不适合作业条件等问题研制了电动背负式风送喷雾器。利用水敏纸、激光粒径分析仪、高速摄影仪测试了其射程、雾滴粒径、液膜雾化形态。利用液质联用仪测试了使用该喷雾器时农药在作物上的沉积分布,并测试了生物防治效果。结果表明:该喷雾器在有风送的条件下雾滴粒径变大、喷雾角减小、液膜变短,在最大风速下射程提高2倍以上。该喷雾器可以改善农药在作物叶片正背两面分布均匀性,使用TR80-01和TR80-02号喷头时农药利用率较手动喷雾器分别提高了1.38倍和1.14倍,在分别使用TR80-01和TR80-02喷头时用药量比手动喷雾器减少1/2和1/3的情况下药效没有明显的差异且增加了农药的持效期。该喷雾器可以提高农药的沉积分布均匀性和利用率,实现减量施药。
The major plant protection equipment in small fields is knapsack sprayer at present in China. When the canopies are tall or dense, the level/electric knapsack sprayers perform very poorly in droplet penetration. Motor knapsack mist sprayer is heavy, noisy and inconvenient to operate. An air-assisted electric knapsack sprayer was developed to improve the spraying efficiency of knapsack sprayer. The key component of the air-assisted electric knapsack sprayer is its atomizer with a motor installed behind the nozzle to drive a five-blade fan. When the motor rotates in a high speed to generate air flow, droplets are pushed to deposit to canopies. At the same time, the air flow blows and reverses leaves, so the droplets can deposit on both sides of leaves. The air-assisted sprayer can adjust its spray pressure from 0.15 to 0.6 MPa and the wind speed near air-flow outlet from 0 to 8 m/s. The atomization of 3 LECHLER hollow cone nozzles(TR80-01, TR80-02, and TR80-03) installed in the air-assisted electric knapsack sprayer was tested under the spraying pressure of 0.3 MPa. Droplet volume medium diameter(VMD) was measured by laser particle size analyzer, spraying angle and spraying sheet length were measured by high-speed photography, and spraying range was measured by water sensitive paper(wsp) under the wind speed of 0, 4, 6 and 8 m/s. Image J software was used to analyze the pictures taken by high-speed photography and Deposit Scan software was used to measure the density of droplets on water sensitive paper. Operating performance of air-assisted electric knapsack sprayer was measured in a tomato greenhouse compared with a conventional level knapsack sprayer. The tomato canopy was divided into 8 areas to determine the amount of pesticide deposition, 2 parts(left and right) from the vertical direction and 4 parts(top, middle upper, middle lower and bottom) from the horizontal direction. The distribution and deposition of the pesticides in tomato canopies were tested by LC-MS. The effect of biological