位置:成果数据库 > 期刊 > 期刊详情页
基于小波不变矩和保局投影的表面缺陷识别方法
  • ISSN号:1001-053X
  • 期刊名称:北京科技大学学报
  • 时间:0
  • 页码:1342-1346
  • 语言:中文
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]北京科技大学高效轧制国家工程研究中心,北京100083
  • 相关基金:国家自然科学基金资助项目(No.60705017);“十一五”国家科技支撑计划资助项目(No.2006BAE03A06)
  • 相关项目:热轧带钢表面缺陷在线检测与识别方法
中文摘要:

提出了一种基于小波矩不变量和保局投影(LPP)的特征提取方法,并应用于中厚板表面缺陷自动识别.首先对图像做三级小波变分解,将中厚板表面图像的细节分解到各个尺度的各个分量中并利用小波阈值收缩法降噪;然后对各分量的傅里叶幅值谱提取Hu不变矩作为原始特征向量,并利用LPP将该特征向量的维数从77维降到8维;最后利用AdaBoost分类器对样本进行分类识别.实验结果表明,本文提出的特征提取方法适用于中厚板表面缺陷分类,识别率达到91.60%.

英文摘要:

A feature extraction method based on wavelet moment invariant and locality preserving projection (LPP) was presented and applied to the automatic recognition of plate surface defects. 3-level wavelet decomposition was performed on the surface images, details of the plate surface images were decomposed into components on several scales, and then the noise scattered in detail components of all the scales was reduced by wavelet shrinkage. Moment invariants were extracted from amplitude spectra of all the components, and then the feature vector composed by all the moment invariants was reduced from 77-demension to 8-dimension via LPP. At last, an AdaBoost classifier based on decision trees was constructed to classify the samples. Experimental results demonstrated that the feature extraction method presented in this paper was applicable to the classification of plate surface defects, and the classification rate was 91.60% .

同期刊论文项目
期刊论文 8 会议论文 3 获奖 1
同项目期刊论文