位置:成果数据库 > 期刊 > 期刊详情页
秸秆还田与氮磷钾化肥配施对直播冬油菜产量及其构成因子的影响
  • ISSN号:1673-6257
  • 期刊名称:《中国土壤与肥料》
  • 时间:0
  • 分类:S565.4[农业科学—作物学]
  • 作者机构:[1]华中农业大学微量元素研究中心,武汉430070, [2]农业部长江中下游耕地保育重点实验室,武汉430070
  • 相关基金:国家自然科学基金项目(31471941); 国家油菜产业体系建设专项(CARS-13)
中文摘要:

为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730-1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。

英文摘要:

Leaf phosphorus content(LPC) is a critical indicator for crop growth, plant productivity and yield formation. Traditional methods of measuring LPC through plant sampling, extraction and spectrophotometric determination in the lab, not only require destructing the crop samples, but also are time-consuming and expensive. Moreover, traditional methods can't meet the demand of non-destructive and rapid monitoring of LPC in winter oilseed rape. Real-time and accurate assessment of temporal and spatial variations of crop LPC is important to help farmers improve site-specific phosphorus(P) management in sustainable agriculture. To develop a quantitative technique for evaluating LPC in winter oilseed rape using ground-based canopy reflectance spectra, 3 field experiments were carried out with different P fertilizer levels and winter oilseed rape cultivars across 3 years, and time-course measurements were taken on canopy spectral reflectance. Meanwhile, chemical assays of these winter oilseed rape samples were performed in the laboratory. In total, 92 of 138 samples were used for building spectral monitoring models of LPC and the other 46 samples were used for model validation. Then, the correlation coefficient(r) of the canopy spectral reflectance by F significant test was determined(P〈0.01), which could be used to extract sensitive wavebands. On the basis, a partial least square(PLS) regression analysis was adopted with 4 spectral transformation methods: 1) the raw hyperspectral reflectance(R), 2) logarithm of reciprocal of reflectance(log(1/R)), 3) continuum removal of reflectance data(CR) and 4) first derivative reflectance(FDR). The prediction accuracy of the optimal methods was evaluated by comparing coefficient of determination(R2), root mean square error(RMSE) and relative percent deviation(RPD) between the observed and predicted LPC values. The results indicated that LPC in winter oilseed rape increased with the increasing of P fertilization rates,

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国土壤与肥料》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国农业部
  • 主办单位:中国农业科学院农业资源与农业区划研究所 中国植物营养与肥料学会
  • 主编:徐明刚
  • 地址:北京中关村南大街12号中国农科院资源区划所
  • 邮编:100081
  • 邮箱:TRFL@caas.ac.cn
  • 电话:010-82108656 82106225传
  • 国际标准刊号:ISSN:1673-6257
  • 国内统一刊号:ISSN:11-5498/S
  • 邮发代号:2-559
  • 获奖情况:
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:7223