基于反散射变换方法建立了Landau-Lifschitz方程的微扰理论.保持由第一个Lax方程出发引入的Jost解的解析性,而在第二个Lax方程中修正了存在微扰项方程散射数据随时间的演化方程,从而得到了Landau-Lifschitz方程微扰理论的两个基本方程以及分离谱时谱参量λn和bn(t)散射数据随时间的演化规律.
The perturbation theory was developed for Landau-Lifschitz equation based on inverse scattering transformation. Two basic equations were observed in the method of remaining Jost solutions from the first Lax equation unchanged and the scattering date being revised in the second Lax equation. Then the spectrum parameter λnand the scattering date bn( t) in the bounded state was given by the method mentioned above.