位置:成果数据库 > 期刊 > 期刊详情页
基于AMSR—E信息的北疆牧区雪深遥感监测模型方法初探
  • ISSN号:1004-5759
  • 期刊名称:《草业学报》
  • 时间:0
  • 分类:S812-05[农业科学—草业科学;农业科学—畜牧学;农业科学—畜牧兽医] S127[农业科学—农业基础科学]
  • 作者机构:[1]农业部草地农业生态系统学重点实验室兰州大学草地农业科技学院,甘肃兰州730020
  • 相关基金:教育部草业人才创新实验区建设项目,国家自然科学基金项目(30571316)和教育部草业科学特色专业项目(TS2410)资助.
中文摘要:

利用北疆地区2002,2003和2004年11月一次年3月3个积雪季AMSR—E445个时相的亮温数字图像和20个气象台站实测雪深数据,系统分析了雪深模型的影响因子和研究区样本筛选方法。通过对18和36GHz波段的水平、垂直极化方式的亮温差和实测雪深值回归分析比较,建立了北疆地区基于AMSR—E亮温数据的雪深反演模型,并对模型的精度进行了评价。结果表明,1)AMSR—E亮温差受气温、融雪、降水、湿雪、深霜层等因素的严重影响,其中受深霜层的影响最大;2)大于2.5cm的积雪深度SD同垂直极化方式的18和36GHz波段的亮温差(Tb18v—Tb36v)之间具有较好的线性相关性,其回归公式为SD=0.49(Tb18v—Tb36v)+8.72,相关系数达0.65。3)当雪深为3~10cm时,反演模型平均误差为-7.1cm,平均绝对误差为7.1cm,RMSE值达7.7cm;当雪深为11~30cm时,平均误差为1.8cm,平均绝对误差为4.9cm,RMSE值为9.1cm;当雪深大于30cm时,平均误差为8.9cm,平均绝对误差为9.4cm,RMSE值为18.1cm。4)该模型在北疆地区优于Chang算法,基本能反映北疆地区雪深变化趋势。当地表为中雪覆盖时,反演雪深值和实测值之间的一致性较高,当地表为浅雪和深雪覆盖时,反演模型的误差较大,其反演精度较低,还有待于进一步研究。

英文摘要:

Using 445 temporal AMSR-E brightness temperature and snow depth data measured by 20 meteorological stations during the three snow seasons from December to March in 2002 to 2004 in Northern Xinjiang, we systematically analyzed the approaches of screening samples and impact factors for establishing a snow depth model. Through regression analysis of horizontal and vertical polarization brightness temperature differences in the 18 and 36 GHz bands, and of snow depth values, a snow depth model was established based on the AMSR-E brightness temperature data in northern Xinjiang. Accuracy of the model was evaluated. 1) AMSR-E brightness temperature differences were seriously affected by temperature, snowmelt, rain, wet snow and deep frost layers, of which the most important factor was deep frost layers. 2) There was a significant correlation between snow depth (y) over 2.5 cm and the vertical polarization brightness temperature difference at 18 and 36 G Hz. The equation was SD= 0. 49 (Tb18w-Tb36v)q-8.72, and the correlation coefficient was up to 0.65. 3) The average error was -7. 1 cm and average absolute error was 7. 1 cm and RMSE was 7. 7 cm when snow depth was 3-10 cm. When snow depth was between 11 and 30 cm, the average error was 1.8 cm, average absolute error was 4.9 cm, and RMSE was 9.1 cm. When the snow depth was over 30 cm, average error was 8.9 cm, average absolute error was 9.4 cm, and RMSE was 18.1 cm. 4) The snow depth model is more accurate than the Chang algorithm in Northern Xinjiang. It showed a good agreement between the simulated and measured snow depth values when the surface was covered by middle depth snow. However, the model's aecuracy was lower when the surface was covered by fallow or deep snow. Basically, the model can reflect the trend of snow depth variation in Northern Xinjiang, but it has a low accuracy for fallow or deep snow, and needs to be improved in the future.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《草业学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术学会
  • 主办单位:中国草学会 兰州大学
  • 主编:南志标
  • 地址:兰州市嘉峪关西路768号
  • 邮编:730020
  • 邮箱:cyxb@lzu.edu.cn
  • 电话:0931-8913494
  • 国际标准刊号:ISSN:1004-5759
  • 国内统一刊号:ISSN:62-1105/S
  • 邮发代号:54-84
  • 获奖情况:
  • 获2002年“百种中国杰出学术期刊”奖
  • 国内外数据库收录:
  • 英国农业与生物科学研究中心文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:23243