研究涉及微分多项式分担集合的亚纯函数的正规性问题。设k≥2是正整数,F为区域D内的一族亚纯函数,其所有零点重级至少为k;a,b和c是复数,且a≠b,c≠0。如果对于F中的任意一对函数f(z)和g(z),有f与g分担c,且L(f)与L(g)分担集合S={a,b},则F在D内正规。
Normality and shared sets concerning differential polynomial are studied.Let k≥2 be a positive integer,and let F be a family of meromorphic functions defined in D,all of whose zeros have multiplicity at least k,and let a,b and c be complex numbers such that a≠b,c≠0.If for each pair of functions f,g∈F,f and g share c,L(f)and L(g)share the set S={a,b}in D,then F is normal in D.