位置:成果数据库 > 期刊 > 期刊详情页
Horseshoe and entropy in a fractional-order unified system
  • ISSN号:1674-1056
  • 期刊名称:《中国物理B:英文版》
  • 时间:0
  • 分类:O19[理学—数学;理学—基础数学] TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]Key Laboratory of Networked Control and Intelligent Instrument of Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing 400065, China, [2]Institute for Nonlinear Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
  • 相关基金:Project supported by the National Natural Science Foundation of China (Grant Nos. 10926072 and 10972082), Chongqing Municipal Education Commission (Grant No. KJ080515) and Natural Science Foundation Project of CQ CSTC, China (Grant No. 2008BB2409).
中文摘要:

This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation.First it finds four quadrilaterals in a carefully-chosen Poincar’e section,then shows that the corresponding map is semiconjugate to a shift map with four symbols.By estimating the topological entropy of the map and the original time-continuous system,it provides a computer assisted verification on existence of chaos in this system,which is much more convincible than the common method of Lyapunov exponents.This new method can potentially be used in rigorous studies of chaos in such a kind of system.This paper may be a start for proving a given fractional-order differential equation to be chaotic.更多还原

英文摘要:

This paper studies chaotic dynamics in a fractional-order unified system by means of topological horseshoe theory and numerical computation. First it finds four quadrilaterals in a carefully-chosen Poincare section, then shows that the corresponding map is semiconjugate to a shift map with four symbols. By estimating the topological entropy of the map and the original time-continuous system, it provides a computer assisted verification on existence of chaos in this system, which is much more convincible than the common method of Lyapunov exponents. This new method can potentially be used in rigorous studies of chaos in such a kind of system. This paper may be a start for proving a given fractional-order differential equation to be chaotic.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国物理B:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国物理学会和中国科学院物理研究所
  • 主编:欧阳钟灿
  • 地址:北京 中关村 中国科学院物理研究所内
  • 邮编:100080
  • 邮箱:
  • 电话:010-82649026 82649519
  • 国际标准刊号:ISSN:1674-1056
  • 国内统一刊号:ISSN:11-5639/O4
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:406