位置:成果数据库 > 期刊 > 期刊详情页
最大度二元约束满足问题粒子群算法
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]吉林大学计算机科学与技术学院,长春130012, [2]吉林大学符号计算与知识工程教育部重点实验室,长春130012, [3]复旦大学智能信息处理开放实验室,上海200433
  • 相关基金:国家自然科学基金项目(60273080.60473003);吉林省杰出青年基金项目(20030107)
中文摘要:

约束满足问题是人工智能的一个重要研究领域,使用粒子群搜索算法来求解约束满足问题逐渐受到人们的重视.把变量的最大度静态变量序关系引入到评估函数中,区别对待每个变量,通过静态变量序关系改变适应度函数,从而影响算法对最优粒子的选择.使用随机约束满足问题实验表明,改进后的算法比原算法具有更好的搜索能力,能以更快的速度收敛到全局解.

英文摘要:

Constraint satisfaction problems is an important research area in artificial intelligence. People now pay more attention to particle swarm intelligence to solve CSPs. But the calculation of evaluation in particle swarm of CSPs is to determine whether the conflict is zero in one variable with its related variables. This way treats each variable equally. Adding max-degree static variable ordering of variables to fitness function is proposed, and now each variable is treated differently. Thus certain variables' instantiation satisfies some constraints firstly with high probability and affects the direction of the whole swarm by selecting the global best particle and local best particles. Random generated constraints satisfaction problems show that this improvement is efficient, which has better capacity in searching and could converge to global solution faster.

同期刊论文项目
期刊论文 60 会议论文 19
期刊论文 13 会议论文 1
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349