位置:成果数据库 > 期刊 > 期刊详情页
ReliefF和APSO混合降维算法研究
  • ISSN号:2096-2835
  • 期刊名称:《中国计量大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:中国计量大学信息工程学院,浙江杭州310018
  • 相关基金:国家自然科学基金资助项目(No.61272315,61602431),浙江省科技厅国际合作专项(No.2017C34003).
中文摘要:

降维与分类一直是机器学习的研究热点,在很多领域有着成功的应用.针对基因数据分类存在特征维数过高、冗余数据和高噪声等问题,现提出一种基于ReliefF和自适应粒子群(APSO)优化的混合降维算法.即先通过ReliefF和APSO算法选择特征子集,然后使用超限学习机作为评价函数对基因数据进行分类,最后通过循环迭代得到最优的分类精度.实验证明,混合降维算法与已有的算法相比分类精度更高、更稳定,它适用于基因表达数据降维.

英文摘要:

Dimensionality reduction and classification are two hot topics in the field of machine learning. We proposed a hybrid feature selection algorithm combining ReliefF and adaptive particle swarm optimization (APSO) for gene data classification, solving the problems of high dimension, redundancy as well as noise. The algorithm extracted the feature subsets by using ReliefF and APSO. The extreme learning machine was used as the evaluation function to classify the gene expression data. The optimized classification accuracy was obtained by recursive substitutions. Experiments show that the proposed hybrid dimensionality reduction algorithm contributes to higher classification accuracy and is more stable than existing algorithms. Consequently, it is an appropriate method for the dimensionality reduction of gene expression data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国计量大学学报》
  • 主管单位:浙江省教育厅
  • 主办单位:中国计量大学
  • 主编:俞晓平
  • 地址:杭州市下沙高教园
  • 邮编:310018
  • 邮箱:cjluxb@vip.163.com
  • 电话:0571-86836078
  • 国际标准刊号:ISSN:2096-2835
  • 国内统一刊号:ISSN:33-1401/C
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘
  • 被引量:3