位置:成果数据库 > 期刊 > 期刊详情页
基于云平台的互信息最大化特征提取方法研究
  • ISSN号:1000-0801
  • 期刊名称:《电信科学》
  • 时间:0
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]中国计量学院信息工程学院,杭州310018, [2]中国计量学院机电工程学院,杭州310018
  • 相关基金:国家自然科学基金资助项目(No.61272315,No.60842009,No.60905034),浙江省自然科学基金资助项目(No.Y1110342,No.Y1080950)
中文摘要:

随着大规模基因芯片的应用,针对高维度的基因表达数据存在大量无关和冗余特征可能降低分类器性能的问题,提出了一种基于云平台的互信息最大化特征提取(CMI-Selection)方法.Hadoop云计算平台对基因表达数据划分后进行并行计算,同时结合互信息最大化方法对特征进行提取,实现了云计算平台上的特征过滤模型.实验结果表明,基于云平台的互信息最大化特征提取方法能够在保证较高分类精度的情况下,快速提取特征,节省大量时间资源,是一种高效的基因特征提取系统.

英文摘要:

With the large-scale application of gene chip,gene expression data with high dimension which exists a large number of irrelevant and redundant features may reduce classifier performance problem.A maximum mutual information feature extraction method based on cloud platforms was proposed.Hadoop cloud computing platform could be a parallel computing after gene expression data segmentation,features was extracted at the same time combined with the maximum mutual information method and the characteristics of cloud computing platform filter model was realized.Simulation experiments show that the maximum mutual information feature extraction method based on the cloud platform can rapid extraction of features in a higher classification accuracy which save a lot of time resources to make a highly efficient gene feature extraction system.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电信科学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国通信学会 人民邮电出版社
  • 主编:韦乐平
  • 地址:北京市丰台区成寿寺路11号邮电出版大厦8层
  • 邮编:100078
  • 邮箱:dxkx@ptpress.com.cn
  • 电话:010-81055443
  • 国际标准刊号:ISSN:1000-0801
  • 国内统一刊号:ISSN:11-2103/TN
  • 邮发代号:2-397
  • 获奖情况:
  • 获第二届全国优秀科技期刊评比三等奖(1997年),获中国科协优秀科技期刊二等奖(1997年),在第四次邮电科技期刊质量检查评比中荣获优秀科技...,国家新闻出版总署将《电信科学》列为“中国期刊方...,获第三届中国科技优秀科技期刊奖三等奖(2002年),在第五次通信行业科技期刊质量检查评比中荣获优秀...,在第六次通信行业科技期刊质量检查评比中荣获优秀...,2008年再次入选《中文核心期刊要目总览》,2009年入选中国科技论文统计
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12435