位置:成果数据库 > 期刊 > 期刊详情页
测光红移算法概述
  • ISSN号:1000-8349
  • 期刊名称:《天文学进展》
  • 时间:0
  • 分类:P141.2[天文地球—天体物理;天文地球—天文学]
  • 作者机构:[1]中国科学院国家天文台,北京100012
  • 相关基金:国家自然科学基金资助项目(10473013,10778724,90412016)
中文摘要:

随着大规模多色巡天项目的完成,测光红移已被视为研究宇宙大尺度结构以及星系形成和演化的有效工具。该文介绍了测光红移的背景、现状、算法及其在天文学中的应用。综述了九种较为常用的估测测光红移的算法,包括HyperZ、颜色-星等-红移关系法(CMR)、多项式回归、基于Kd树的多项式回归、贝叶斯方法、支持向量机(SVMs)、人工神经网络(ANNs)、最近邻或K近邻方法和核回归等。着重讨论和比较了这些算法的效果和性能,同时也对它们的优缺点进行了阐述,并对未来的测光红移算法研究进行了展望。

英文摘要:

With the establishment and development of large digital sky survey projects,astronomic data are measured by TB,even PB,including various photometric and spectroscopic data. Photometric redshifts have shown their superiority compared to spectroscopic ones.So far photometric redshifts have been regarded as an efficient and effective measure for studying the statistical properties of the large-scale structure of the universe and the formation and evolution of galaxies.We illustrate the conception,background and approaches of photometric redshifts, as well as its application in astronomy,then mainly summarize nine approaches to determine photometric redshifts,namely HyperZ,Color-Magnitude-Redshift relation(CMR),polynomial regression,polynomial regression based on KdTree,Bayesian method,Support Vector Machines (SVMs),Artificial Neural Networks(ANNs),K-nearest neighbor and kernel regression.Photometric redshift techniques have been divided into two broad categories:template matching method and empirical training-set method.The former includes HyperZ,and the latter contains CMR,polynomial regression,polynomial regression based on KdTree,Bayesian method,SVMs, ANNs.Another interpolative training-set methods are instance-based learning techniques,which are composed of nearest neighbor,K-nearest neighbor and kernel regression.There are advantages and disadvantages to each approach.Template matching technique relies on fitting model galaxy spectral energy distributions(SEDs)to the photometric data,where the models span a range of expected galaxy redshifts and spectral types.The Achilles heel of the technique is the shortage of large and complete template sets.The training set method depends on representative and complete training sets,moreover it is difficult to extrapolate to regions that are not well sampled by the training set.Unlike the traditional training methods,the best merit of instance-based learning approach is the ability to make predictions with different parameters without needing a retraining

同期刊论文项目
期刊论文 46 会议论文 14
期刊论文 36 会议论文 7 著作 2
同项目期刊论文
期刊信息
  • 《天文学进展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院上海天文台 中国天文学会
  • 主编:沈志强
  • 地址:上海市南丹路80号406
  • 邮编:200030
  • 邮箱:twxjz@shao.ac.cn
  • 电话:021-34775108
  • 国际标准刊号:ISSN:1000-8349
  • 国内统一刊号:ISSN:31-1340/P
  • 邮发代号:4-819
  • 获奖情况:
  • 1996年在第2届上海市优秀科技期刊评比中获得3等奖...,获得2011年上海市新闻出版局组织的期刊审读优秀奖
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:1404