针对过冷大水滴(SLD)撞击结冰表面的飞溅现象,开发了基于欧拉法的二维算法程序,该程序将LEWICE飞溅模型和FENSAP飞溅模型耦合到水滴流场控制方程中进行求解,实现了对SLD撞击特性的准定常计算。根据水滴飞溅模型中对于飞溅生成子水滴质量和速度等信息的定义,通过定义控制方程中的源项,将其耦合到控制方程的求解中,进而研究水滴飞溅效应对于撞击特性的影响。研究发现,由于水滴的飞溅作用,导致翼型壁面附近的液态水含量(LWC)分布发生变化;通过对上述两种典型的SLD飞溅模型进行计算分析,发现了SLD撞击特性的一些共性和不同,并揭示了SLD撞击效应的一般特点。
To study the dynamics of droplet splashing when super-cooled large droplets (SLD) impinge on solid surfaces, a code is developed for the quasi-steady simulation of two-dimensional SLD impingement in a Eulerian framework. The gover- ning equations of the droplet phase, which incorporate two classical splashing models, the LEWICE splashing model and the FENSAP splashing model, are solved for the simulation of droplet-wall interaction. The mass and velocities given in the splashing models are incorporated in the solutions of the governing equations by modifying the source terms and then the splashing dynamics can be investigated. It is found that the distribution of the liquid water content (LWC) around the airfoil surface is changed due to splashing. Some commonalities and differences are investigated during the calculation and analysis of the two splashing models and this may be helpful in studying SLD impingement.