二次电子发射模型的精度对二次电子倍增击穿阈值的模拟计算影响很大, 针对现有两种经典二次电子发射唯象模型的不足, 以修正Vaughan模型作为Furman模型中的真二次电子发射系数计算模型, 建立起一种二次电子发射的复合唯象模型. 该模型不仅适用于倍增击穿过程的数值模拟, 还很大程度上提高了与实验数据拟合的准确性. 通过对银和铝合金两种材料二次电子发射系数实验结果和模型拟合结果的对比发现, 在不同入射角情况下, 复合唯象模型的平均误差较原有两种模型降低了10%以上.
The accuracy of the model for secondary electron yield (SEY) has a remarkable influence on the simulation result of multipactor threshold. A new combined phenomenological model for SEY was proposed based on the corrected Vaughan model and Furman model. It combines virtues of the latter two models by integrating corrected Vaughan model into Furman model for its calculation of yield of true secondary electron. The new model provides high flexibility and accuracy to fit experimental data of SEY as a function. For comparison, experimental data of silver and aluminum alloys were tested with the three models. It was found that the fitting accuracy has been improved by at least 10% under the circumstances of different incident angles of the original electron.