应用Hirota双线性算子方法得到(2+1)维非线性薛定谔方程的周期解和其极限解,利用sato算子理论把(1+1)维非线性薛定谔方程的Grammian解转化为(2+1)维非线性薛定谔方程非奇异的有理解,从而得到(2+1)维非线性薛定谔方程的一阶和高阶怪波解。研究结果说明了高维的非线性薛定谔方程具有有理分式的怪波解,这些方法同样适用于其他的高维薛定谔型方程,如Mel’nikov方程、Fokas系统等。