针对一类具有分布时滞的不确定中立型随机系统,研究了其具有反馈增益变化的H∞状态反馈控制器的设计问题,即设计的控制器当自身受到外部扰动时仍能完成对系统的镇定并满足H∞性能。利用Lyapunov稳定性理论,采用线性矩阵不等式方法,提出了中立型随机系统的非易碎状态反馈H∞控制器存在的充分条件,并给出了相应控制器的设计方法。最后给出数值算例验证了该方法的有效性。
This paper considers the H∞ control problem for uncertain neutral stochastic systems with distributed delays via non-fragile controllers, i. e. , the controllers can stabilize the systems and satisfy the H∞ performance even if the controllers are perturbed externally. Making use of the theory of Lyapunov stability and linear matrix inequality, the sufficient condition for the existence of such nonfragile H∞ controllers is obtained and the expression of the desired controllers is given. An example is provided to demonstrate the effectiveness of the proposed approach.