位置:成果数据库 > 期刊 > 期刊详情页
基于ELM神经网络的FAST节点位移预测研究
  • ISSN号:1005-3026
  • 期刊名称:《东北大学学报:自然科学版》
  • 时间:0
  • 分类:TP393.17[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]东北大学计算机科学与工程学院,辽宁沈阳110169, [2]中国科学院国家天文台,北京100012
  • 相关基金:国家自然科学基金资助项目(11273001).
中文摘要:

针对ELM神经网络隐含层节点数目需要人工设定,容易出现过拟合现象从而导致网络的泛化能力降低的问题,引出了基于误差最小化的ELM神经网络的改进方法 EM_ELM算法,并在理论上论证了EM_ELM算法对于提高ELM神经网络预测精度和泛化能力的可行性.随后将EM_ELM算法应用到FAST节点位移的预测模型中,并且进行了仿真验证.仿真结果表明虽然EM_ELM神经网络在训练时间上有了一定的损失,但是仍能满足实时性的要求,而且它的预测精度和泛化能力都得到提升,证明了改进算法的有效性与可行性,进一步说明了EM_ELM神经网络更适合应用于FAST节点位移预测.

英文摘要:

Due to the problems that the numbers of nodes in hidden layers of ELM neural network are in need of manual setting, and the over-fitting phenomenon is easy to appear, resulting in a reduction in the network generalization, an EM_ELM algorithm was proposed to improve ELM neural network based on error minimization. The feasibility was proved in theory which could improve the prediction accuracy and generalization of ELM neural network. Meanwhile, the algorithm was also applied into the model of FAST node displacement prediction and conducted simulation finally. The results show that although EM_ELM neural network is not sufficient in training time to a certain degree, it is still proper in real-time requirement. Besides, its prediction accuracy and generalization capabilities are enhanced,which is just a proof in the effectiveness and feasibility of the improved algorithm,thereby further illustrating that the EM_ ELM neural network is more suitable for FAST node displacement prediction.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《东北大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:汪晋宽
  • 地址:沈阳.南湖
  • 邮编:110819
  • 邮箱:
  • 电话:024-83687378
  • 国际标准刊号:ISSN:1005-3026
  • 国内统一刊号:ISSN:21-1344/T
  • 邮发代号:8-120
  • 获奖情况:
  • 全国优秀科技期刊二等奖,教育部优秀高校自然科学学报一等奖二次,获原冶金部科技期刊质量评比一等奖三次,中国期刊方阵“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:23296