位置:成果数据库 > 期刊 > 期刊详情页
基于蚁群算法的神经网络规则抽取
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]苏州大学计算机与科学技术学院,苏州215006, [2]扬州职业大学信息工程学院,扬州225000
  • 相关基金:国家自然科学基金项目(60673092);教育部科研重点项目(205059);江苏省高校自然科学基金(07KJD520186)
中文摘要:

从神经网络的功能性观点出发,将蚁群算法用于神经网络的规则抽取,为每个隐单元和输出单元生成各自的规则,然后依照网络的传导方向聚合这些规则,从而为整个网络抽取出理解性好、简洁的符号规则.该方法不依赖于具体的网络结构和训练算法,可以方便地应用于各种分类器型神经网络.实验结果表明了该方法的实用性和可行性.

英文摘要:

This paper from the functional point of view,proposed a method that the ant colony algorithm is applied to the rule extraction from neural networks,generating respective rules for each hidden units and output units then polymerizing these rules according to the network's conduction direction,thus extracting accurate,concise and comprehensible symbolic rules for the whole network.This method is independent of the architecture and training algorithm so that it could be easily applied to diversified neural classifiers.The result of experiment has shown its practicability and feasibility.

同期刊论文项目
期刊论文 46 会议论文 9 专利 3
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909