基于Hirota双线性方法,得到了(2+1)维变非线性系数薛定谔方程的一个孤子解。数值模拟与解析解的一致性表明,在圆柱对称的坐标系中,这种克尔型孤子形成了一类新的涡流型的空间孤子簇。这些孤子的传输是稳定的,独立于传输距离。
A soliton solution to (2+1)-dimensional nonlinear SchrSdinger equation with variable nonlin- earity coefficients based on Hirota bilinear method was obtained. The results indicate that a new family of vortex solitons can be formed in the Kerr nonlinear media in the cylindrical symmetric geometry. These soliton profiles are stable, independent of propagation distance.