位置:成果数据库 > 期刊 > 期刊详情页
基于机器视觉的动态多目标识别
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:杭州电子科技大学自动化学院,杭州310018
  • 相关基金:浙江省自然科学基金资助项目(LY17F030022),国家自然科学基金资助项目(61175093,61503108)
中文摘要:

提出了一种基于机器视觉的实时动态多目标识别的方法.该方法首先根据前后帧之间像素的变化,分割出运动目标和样本图像,然后使用Gabor滤波器提取图像的特征,得到特征向量.最后使用Fisher判别准则分类识别,将得到的分类识别结果自动标注在输出图像中,并且将其连续输出,便能获得已经识别完成的输出视频.实验结果表明,在多个动态目标的情况下,综合运用Gabor特征与帧间差分法的动态目标识别方法能准确检测到动态目标区域,并能准确分类、识别和标注.

英文摘要:

This paper proposes a real-time dynamic multi-target recognition method based on machine vi- sion. The method first segments the moving targets according to the pixel change between the front and rear frames, then extracts the features of the segmented moving targets and sample images using Gabor fil- ter to obtain the eigenvector, and finally uses Fisher discriminant criterion for classification and recognition so as to automatically lable the classification and recognition results onto the output images. The images labeled with the recognition results are to be outputted continuously, and hence the output videos which have been recognized can be obtained. The experimental results show that in the circumstance of multiple targets, the proposed dynamic target recognition method integrating Gabor feature and interframe differ- ence can accurately detect the dynamic target area, and realize classification, recognition and labeling.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903