位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机多分类器的室内外场景感知算法
  • ISSN号:1001-9081
  • 期刊名称:《计算机应用》
  • 时间:0
  • 分类:TP274[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京邮电大学软件学院,北京100083, [2]北京邮电大学国际学院,北京100083, [3]中国科学院计算技术研究所普适计算研究中心,北京100190
  • 相关基金:国家自然科学基金资助项目(61374214);国家国际科技合作与交流专项课题(2015DFG12520);天津市863成果转化课题(14RCHZGX00857);深圳市战略性新兴产业发展专项(深发改[2014]1787号).
中文摘要:

针对普适室内外场景持续感知面临的低功耗、复杂动态环境、异构使用模式带来的挑战,提出了一种轻量级的基于支持向量机多分类器的高精度、低功耗室内外场景检测算法。该算法使用智能手机集成的各种传感器(可见光传感器、磁传感器、加速度传感器、陀螺仪传感器和气压传感器),在挖掘分析各种传感器在室内外场景的不同特征,以及人们在室内外场景的行为差异基础上,根据时间和气象条件设计多个支持向量机分类器,对复杂室内外场景进行识别。实验结果表明,基于支持向量机多分类器的室内外场景检测算法具有较好的普适性,可获得95%以上的室内外判定准确率,平均功耗小于5mW。

英文摘要:

Considering the low power consumption for successive indoor and outdoor scenes pervasive perception in complex and dynamic environment, a lightweight indoor and outdoor scene identification algorithm based on Support Vector Machine (SVM) multi-classifier was proposed, which can accurately distinguish the indoor and outdoor scenes with low power consumption. The algorithm adopted data mining method to obtain different characteristics in indoor and outdoor scenes from the sensors integrated in smart phones (such as visible light sensors, magnetic sensors, acceleration sensors, gyro sensors, and pressure sensors, etc. ). It also made advantage of human behavior difference between indoor and outdoor scene. According to different time and weather conditions, the algorithm designed support vector machine multi-classifier to identify complex indoor and outdoor scenes based on the differences of human behavior in indoor and outdoor scene. The simulation results show that the proposed algorithm has good universality, and can determine the indoor and outdoor scenes with more than 95% accuracy, and only consumes less than 5 mW averaging power.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术协会
  • 主办单位:四川省计算机学会中国科学院成都分院
  • 主编:张景中
  • 地址:成都市人民南路四段九号科分院计算所
  • 邮编:610041
  • 邮箱:xzh@joca.cn
  • 电话:028-85224283
  • 国际标准刊号:ISSN:1001-9081
  • 国内统一刊号:ISSN:51-1307/TP
  • 邮发代号:62-110
  • 获奖情况:
  • 全国优秀科技期刊一等奖,国家期刊奖提名奖,中国期刊方阵双奖期刊,中文核心期刊,中国科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:53679