对给定随机变量Xi∈[0,M](i=1,2)具有EXi=μi,EX2i=μ2i+σi2(i=1,2)和EX1X2=μ1μ2+σ12,得到了截尾变量max(0,X1-X2)的均值的矩界,还得到了概率的上界。这些问题来源于欧氏期权,欧氏互换期权等的研究。所用方法基于用二次函数控制待估函数。
Given any random variables Xi∈ with E Xi=μi,E X2i=μ2i+σ2i(i=1,2) and E X1X2=μ1μ2+σ12,various bounds are derived on the mean of the truncated random variable max(0,X1-X2).Also explicit upper bound on probability is presented.These results are motivated by questions associated with European exchange option and European call option.The techniques are based on domination by quadratic functions.