位置:成果数据库 > 期刊 > 期刊详情页
一种基于经验模式分解与支持向量机的转子故障诊断方法
  • ISSN号:0258-8013
  • 期刊名称:《中国电机工程学报》
  • 时间:0
  • 分类:TH113[机械工程—机械设计及理论]
  • 作者机构:[1]湖南大学机械与汽车工程学院,湖南省长沙市410082
  • 相关基金:国家自然科学基金项目(50275050).
中文摘要:

转子系统故障诊断的关键是故障特征提取和状态识别,在故障特征提取中,采用自回归(AR)模型参数作为特征向量来分析系统的状态变化是十分有效的,但AR模型只适用于平稳信号的分析,而转子系统的振动信号表现出非平稳特征;同时在状态识别中,支持向量机(SVM)有效地改善了传统分类方法的缺陷。针对这些问题,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机的转子系统故障诊断方法。该方法对转子系统的振动信号进行经验模态分解,将其分解为若干个固有模态函数(intrinsic mode function,IMF);对每一个IMF分量建立AR模型,取模型的自回归参数和残差的方差作为故障特征向量,并以此作为输入来建立支持向量机分类器,判断转子系统的工作状态和故障类型。实验结果分析表明,文中提出的方法能有效地应用于转子系统的故障诊断。

英文摘要:

A fault diagnosis approach for rotor systems based on EMD method and support vector machine is proposed The EMD method is used to decompose the vibration signal of a rotor system into a number of intrinsic mode function components and then the autoregressive mode(AR) model of each IMF component is established. The main auto-regressive parameters and the variances of remnant are regarded as the feature vectors. Then, the support vector machines used as fault classifiers are established to identify the condition and fault pattern of the rotor system. Practical examples show that the proposed approach can be applied to the rotor system fault diagnosis effectively.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国电机工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国电机工程学会
  • 主编:张文涛
  • 地址:北京清河小营东路15号 中国电力科学研究院内
  • 邮编:100192
  • 邮箱:pcsee@epri.sgcc.com.cn
  • 电话:010-82812536 82812534 82812545
  • 国际标准刊号:ISSN:0258-8013
  • 国内统一刊号:ISSN:11-2107/TM
  • 邮发代号:82-327
  • 获奖情况:
  • 1992年全国优秀科技期刊三等奖,1992年中国科协优秀科技期刊二等奖,1996年中国科协优秀科技期刊二等奖,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:98970