位置:成果数据库 > 期刊 > 期刊详情页
基于集成学习方法的蛋白质相互作用预测
  • ISSN号:2096-3246
  • 期刊名称:《工程科学与技术》
  • 时间:0
  • 分类:TP301[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川大学计算机学院,四川成都610065, [2]四川大学化学学院,四川成都610064, [3]华东师范大学计算中心,上海200062
  • 相关基金:国家自然科学基金资助项目(20972103;20905054)
中文摘要:

针对蛋白质相互作用的预测问题,提出了集成学习的方法。该方法使用人工神经网络和支持向量机为成员分类器的集成学习方法,并分别用自协方差编码方式和二肽组成来表示蛋白质序列的特征集合,预测的准确率和ROC曲线面积分别达到92.16%、94.38%和0.972 5、0.981 5。通过对成员分类器、集成学习方法以及集成学习方法之间的预测效果进行比较,结果表明,集成学习方法可获得更优的预测效果,并能有效提高预测精度,避免采样学习带来的不稳定性。

英文摘要:

To effectively predict the protein-protein interactions,an ensemble learning with artificial neural network and supporting vector machine as the individuals was used,and the feature selection of protein sequence was indicated by auto covariance and dipeptide composition.The prediction accuracy and AUC reached 92.16%,94.38% and 0.972 5,0.981 5,respectively.A comparison among artificial neural network,supporting vector machine and ensemble learning showed that the ensemble learning revealed more superior performance than the others and can improve the prediction accuracy while avoiding the instability of prediction caused by sampling learning.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程科学与技术》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:四川大学
  • 主编:谢和平
  • 地址:成都市一环路南一段24号
  • 邮编:610065
  • 邮箱:jsu@scu.edu.cn;jscu@163.com
  • 电话:028-85405425
  • 国际标准刊号:ISSN:2096-3246
  • 国内统一刊号:ISSN:51-1773/TB
  • 邮发代号:62-55
  • 获奖情况:
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:19