针对有限元法求解气隙磁场的磁路几何模型占用内存空间多和计算时间长等问题,提出一种基于等效磁化强度法求解电磁式角振动台气隙磁场分析方法。基于等效磁化强度法建立矢量磁位的微分方程组,得到包含磁路几何参数的磁感应强度解析表达式;与有限元法计算结果对比,验证等效磁化强度法的正确性;采用等效磁化强度法对磁路参数进行优化。分析结果表明:当气隙厚度保持不变时,随着永磁体扇形角的增加,气隙中有效均匀磁感应强度的区域变宽,而随永磁体厚度的增加,气隙磁感应强度将增强;当永磁体扇形角和厚度保持不变时,磁感应强度随气隙厚度的增加而减小。该方法可以快速分析磁路结构参数变化对气隙磁感应强度的影响程度,为优化设计电磁式角振动台磁路结构提供理论参考。
The finite element method (FEM) takes much more memory space and computing time for establishing a magnetic circuit geometrical model for the analysis of the air-gap magnetic field . An efficient analytical approach is presented to solve the air-gap magnetic field of electromagnetic angular vibrators based on the equivalent magnetization intensity method (EMIM). The differential equations of the mag- netic potential vector are built up based on the EMIM, and an analytical expression of magnetic flux den- sity (MFD) that contains the geometrical parameters of magnetic circuit is derived. The effectiveness of EMIM is verified by comparing the calculated results of FEM and EMIM. The magnetic circuit parameters are optimized by using EMIM. The results show that the region of the effective uniform MFD is widened with the increase in the sector angle of permanent magnet (PM) , and MFD in the air-gap becomes strong with the increase in the thickness of PM when the thickness of air-gap remains constant. MFD decreases with the increase in the thickness of air-gap when the sector angle and thickness of PM remain constant. The proposed method can be used to quickly analyze the parameters of magnetic circuit that impact on the air-gap magnetic field, and provide the theoretical reference of the magnetic circuit optimal design in electromagnetic angular ribrators.