光催化分解水制H2和光催化还原CO2是解决能源危机和全球变暖的有效途径.但是,由于粉末光催化剂存在回收效率低的问题,因而光催化成本很高.而磁性光催化剂便于回收和重复利用,因此人们把目光转向具有磁性的非光催化剂材料,试图通过改性使得磁性材料具有合适的水分解或者还原CO2的氧化还原电位.同时,对具有光催化活性但是没有磁性的材料进行磁化改性可以得到新型的磁性光催化剂.本文通过对本身具有磁性的NiO材料进行Cu掺杂能带调整,使调整后的NiO具有合适的氧化还原电位;对本身具有良好光催化氧化还原电位的CuO材料进行Ni掺杂磁化调整,使磁化后的CuO既有良好的氧化还原电位又有磁性.最终两种材料经过掺杂变成磁性光催化材料,既有较好的光催化性能,又可高效回收,因此有望在光催化领域具有潜在的应用前景.LSDA(局域自旋密度近似)+U(有效库仑相关能)计算方法能够很好地给出磁矩和禁带宽度等电子结构性质.本文通过LSDA+U计算方法对具有磁性的宽禁带半导体材料NiO进行电子结构改性研究,希望通过降低其禁带宽度、调整其氧化还原电位使之对太阳光有响应.因其同时具有磁性便于回收,使得光催化分解水制H2和光催化还原CO2成本高的问题得到解决.对NiO的磁胞进行了Cu掺杂计算,结果发现Cu的掺杂几乎没有引起NiO空间结构的变化,这是因为Cu和Ni的离子半径相近.通过对电子结构的计算发现掺杂体系的禁带变窄,并且在禁带中间出现了两条杂质能级,该杂质能级是由掺杂原子Cu3d态组成.杂质能级的出现能够降低光生载流子在带隙中的复合,从而提高光催化效率.计算结果同时表明,Cu掺杂的NiO系统具有一个1μB的净磁矩,即Cu的掺杂使得NiO显示出磁性,而Ni的磁矩在掺杂前后几乎保持不变,由纯相的1.67μB增加到掺杂体系中的1.70μB.
Doping is an effective way to improve the activity of photocatalysts.The effect of doping on the magnetic properties of some photocatalysts that are easily recycled was studied using the local spin density approximation(LSDA)+U method on typical divalent metal oxide semiconductors CuO,NiO,Ni‐doped CuO,and Cu‐doped NiO.It is found that the influence of Ni doping on the spatial structure of CuO and that of Cu doping on the spatial structure of NiO are negligible because of the similar radii of Ni2+and Cu2+.The valence band and conduction band for Ni‐doped CuO are clearly spin‐split,corresponding to a net effective magnetic moment ofμeff=1.66μB.This may improve the photocatalytic efficiency and raise the recycle rate of photocatalysts.In the Cu‐doped NiO system,the presence of Cu3d states near to the Fermi level increases the width of the valence band and narrows the band gap with respect to that in pure NiO.Beyond the Cu3d states,within the band gap,appear two energy levels around the Fermi level,which may effectively separate the electron‐hole pair and also lead to enhanced absorption of visible light and infrared light.It can be concluded that the observed changes in the band structure may be helpful for improving the activity of photocatalysts and the doped systems have net magnetic moments,meaning that they are easily recycled and can be reused.