纳米尺度探针是研究纳米薄膜材料的重要工具.针对纳米探针和石墨烯相互作用有限元模型静态计算中难以收敛的困难,应用动态显式算法通过间歇式探针进给方式进行能量耗散,得出静态计算结果.模型中界面作用力由界面黏结能和原子间作用势导出并植入Abaqus软件中界面作用子程序,实现对石墨烯、探针,基体系统内相互作用的仿真计算.通过对比计算结果和实验数据,对实验结果给出了一致性解释.
Probes of nano scale are a type of important tools for the study on nano-film material. Dynamic explicit method accompanied by the intermittent feeding of probe to dissipate the energy is applied to avoid the difficulty of convergence in the finite element model for a system of probe, graphene, and substrate. And the results of a static state are obtained from this strategy. The functions of interface interaction forces are deduced from adhesion energy and the potential between atoms. The force functions are implanted into subroutines in Abaqus code to simulate the interactions among graphene layers, probe, and substrate. Results of simulations show good consistency with the data of experiments.