将NO脉冲流光放电的2个主要激发解离通道作为主要研究对象,依据不同电子激发温度下电子能量分布函数和电子激发态的碰撞激发函数,积分计算了脉冲流光放电下NO的2个主要激发解离通道的激发碰撞截面,并依据激发碰撞几率函数归一的原理,研究了NO 2个主要激发解离通道的竞争过程.N原子和N+特征谱线荧光辐射强度随电子激发温度变化的计算结果与本研究小组的实验结果符合得很好,验证了理论处理的合理性,也为NO分解过程研究提供了理论依据.
Taking two main excited and dissociating processes of NO in pulse streamercorona as the primary object of research, based on electron energy distribution function at different electronic excitation temperature and collision excitation function of excited electronic state, the integral of collision excitation sections of two main excited and dissociating processes of NO in pulse streamercorona were calculated; and the competition of two main excited and dissociating processes of NO was studied according to normalization theory of probability function of collision excitation. Calculating result of radiation intensity of marked fluorescence spectrum of N atom and N+ at different electronic excitation temperature conformed well to the others' experimental ones in the research group, which verified the theory was rational and gave the theoretical basis for the dissociating process of NO gas.