位置:成果数据库 > 期刊 > 期刊详情页
环境自适应软体机器人驱动方式和路径规划研究
  • ISSN号:1673-2340
  • 期刊名称:南通大学学报(自然科学版)
  • 时间:2013.9.20
  • 页码:28-33
  • 分类:TP24[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]南通大学电气工程学院,江苏南通226019, [2]常州先进制造技术研究所,江苏常州213164
  • 相关基金:国家自然科学基金项目(61105111,61005054)
  • 相关项目:仿静水骨骼软体机器人的物态相变驱动与调控机理研究
中文摘要:

软体机器人具有优越的柔软性能,能够灵活的穿越狭小的空间,并且对非结构化环境具有较强的自主适应能力.驱动方式和路径规划是软体机器人的关键,其驱动分为有缆驱动和无缆驱动.采用气动、形状记忆合金、电活性聚合物、聚合凝胶等作为驱动器.气动、形状记忆合金之类的驱动器灵活度低、自由度少;电活性聚合物以及聚合凝胶之类的驱动器灵活度高、自由度高.软体机器人的路径规划主要采用人工智能算法,在实际使用中还存在一系列的问题需要继续研究.比如概率路线法和碰撞检测法都易陷入局部最小点与最优点:遗传算法运算效率不高、在线规划困难:神经网络算法泛化能力差等.现在可用的智能算法都只适用特定的物体而不适用通用可变形物体.未来需要致力于柔性驱动器以及新型路径规划算法的研究.

英文摘要:

Characterized by its amazing softness, Soft robot can agilely get through cramped space and has strong ability of self-adaption to unstructured environment. Driving mode and path planning are the keys of soft robot. Its drive mode can be divided into cable driven and wireless drive. The materials used in actuators include pneumatic, shape memory alloys, electroactive polymers and polymer gel etc. Pneumatic and shape memory alloys have low flexibility and low degrees of freedom; while materials, like electroactive polymers and polymeric gel, have high flexibility and high degree of freedom. When the path planning mainly adopts artificial intelligence algorithms, many problems in application are still left to be further researched. Probability path method and impact test are easily trapped in the local minimum point and the most advantage; Genetic algorithm, claimed as easy to be combined with other algorithms, is low in operation efficiency and difficult in online programming and its evolutionary effect is not obvious; Neural network enjoys the reputation of high learning ability, simple calculation, fast convergence speed, but it has poor generalization ability. Now the available intelligent algorithm is only applicable to the particular object and cannot be applied to general deformable objects. So it is necessary to focus on the flexible software robots drive and new path planning algorithm in the future study.

同期刊论文项目
期刊论文 22 会议论文 6 专利 4
同项目期刊论文
期刊信息
  • 《南通大学学报:自然科学版》
  • 主管单位:江苏省教育厅
  • 主办单位:南通大学
  • 主编:戴兵
  • 地址:江苏省南通市啬园路9号
  • 邮编:226019
  • 邮箱:xbzkb@ntu.edu.cn
  • 电话:0513-85012868
  • 国际标准刊号:ISSN:1673-2340
  • 国内统一刊号:ISSN:32-1755/N
  • 邮发代号:
  • 获奖情况:
  • 首届CAJ执行优秀期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),波兰哥白尼索引,美国剑桥科学文摘
  • 被引量:1585