位置:成果数据库 > 期刊 > 期刊详情页
支持在线学习的增量式极端随机森林分类器
  • ISSN号:1000-9825
  • 期刊名称:软件学报
  • 时间:0
  • 页码:2059-2074
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]国防科学技术大学计算机学院,湖南长沙410073
  • 相关基金:基金项目:国家自然科学基金(90707003,60970094)
  • 相关项目:基于非刚性变换不变性的动态三维几何模型分解技术研究
中文摘要:

提出了一种增量式极端随机森林分类器(incremental extremely randomforest,简称IERF),用于处理数据流,特别是小样本数据流的在线学习问题.IERF算法中新到达的样本将被存储到相应的叶节点,并通过Gini系数来确定是否对当前叶节点进行分裂扩展,在给定有限数量,甚至是少量样本的情况下,IERF算法能够快速高效地完成分类器的增量构造.UCI数据集的实验证明,提出的IERF算法具有与离线批量学习的极端随机森林(extremely random forest,简称ERF)算法相当甚至更优的性能,在适度规模的样本集上,性能优于贪婪决策树重构算法和其他几种主要的增量学习算法.最后,提出的IERF算法被应用于解决视频在线跟踪(包含多目标跟踪)问题,基于多个真实视频数据的实验充分验证了算法的有效性和稳定性.

英文摘要:

This paper proposes an incremental extremely random forest (IERF) algorithm, dealing with online learning classification with streaming data, especially with small streaming data. In this method, newly arrived examples are stored at the leaf nodes and used to determine when to split the leaf nodes combined with Gini index, so the trees can be expanded efficiently and fast with a few examples. The proposed online IERF algorithm gives more competitive or even better performance, than the offiine extremely random forest (ERF) method, based on the UCI data experiment. On the moderate training datasets, the IERF algorithm beats the decision tree reconstruction algorithm and other incremental learning algorithms on the performance. Finally, the IERF algorithm is used to solve online video object tracking (multi-object tracking also included) problems, and the results on the challenging video sequences demonstrate its effectiveness and robustness.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《软件学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院软件研究所 中国计算机学会
  • 主编:赵琛
  • 地址:北京8718信箱中国科学院软件研究所
  • 邮编:100190
  • 邮箱:jos@iscas.ac.cn
  • 电话:010-62562563
  • 国际标准刊号:ISSN:1000-9825
  • 国内统一刊号:ISSN:11-2560/TP
  • 邮发代号:82-367
  • 获奖情况:
  • 2001年入选中国期刊方阵“双百期刊”,2000年荣获中国科学院优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),波兰哥白尼索引,德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:54609