位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机方法的压电智能结构系统辨识
  • ISSN号:1004-4523
  • 期刊名称:《振动工程学报》
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置] TU31[建筑科学—结构工程]
  • 相关基金:国家自然科学基金(编号:50390063)和国防科技重点实验室基金(编号:51463040403JW0301)资助项目
作者: 董兴建, 孟光
中文摘要:

支持向量机(SVM)是一种基于统计学习理论和结构风险最小化原则的新型机器学习方法,克服了传统机器学习方法在训练中的局部极小问题,过学习和欠学习等问题,具有很好的泛化能力.本文介绍了应用于回归分析的最小二乘支持向量机(LS-SVM)的基本理论,然后以随机激励下压电智能结构的响应数据作为训练样本集,采用LS-SVM方法辨识系统,仿真结果验证了这种方法的有效性.

同期刊论文项目
期刊论文 13 会议论文 209 著作 8
同项目期刊论文
期刊信息
  • 《振动工程学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国振动工程学会
  • 主编:刘人怀
  • 地址:南京市御道街29号
  • 邮编:210016
  • 邮箱:zdxb@nuaa.edu.cn
  • 电话:025-84895885
  • 国际标准刊号:ISSN:1004-4523
  • 国内统一刊号:ISSN:32-1349/TB
  • 邮发代号:28-249
  • 获奖情况:
  • 1995年江苏省首届期刊质评一级期刊,1997年获中国科协优秀期刊,1999年获国家自然科学基金委经费资助
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:12831