A type of Fe-Al-Nb-B cored wire was designed and the coating was prepared using a robot-based electric wire arc spraying process. The Fe-Al binary cored wire and coating were also prepared as comparison. The phase composition and structure of the coatings were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The coating tribological properties were evaluated with the micromotion wear tester under different conditions. The results show that, although typical lamellar structure was performed for both the arc sprayed Fe-Al-Nb-B coating and Fe-Al coating, the structure composition, mechanical and wear properties of the former are quite different from those of latter. The Fe-Al-Nb-B coating is a typical composite coating, which is distributed inhomogeneously with α-Fe crystalline, FeAl and Fe3Al intermetallics, amorphous and nanocrystallines as well as locally existed oxide phases. As a result, the mircrohardness and wear resistance of the Fe-Al-Nb-B composite coating increased significantly. Finally the mechanism of the coating wear resistant behavior was discussed based on the experimental results such as friction coefficient, two dimensional and three dimensional worn surface profiles.
A type of Fe-Al-Nb-B cored wire was designed and the coating was prepared using a robot-based electric wire arc spraying process. The Fe-Al binary cored wire and coating were also prepared as comparison. The phase composition and structure of the coatings were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The coating tribological properties were evaluated with the micromotion wear tester under different conditions. The results show that, although typical lamellar structure was performed for both the arc sprayed Fe-Al-Nb-B coating and Fe-Al coating, the structure composition, mechanical and wear properties of the former are quite different from those of latter. The Fe-Al-Nb-B coating is a typical composite coating, which is distributed inhomogeneously with α-Fe crystalline, FeAl and Fe3Al intermetallics, amorphous and nanocrystallines as well as locally existed oxide phases. As a result, the mircrohardness and wear resistance of the Fe-Al-Nb-B composite coating increased significantly. Finally the mechanism of the coating wear resistant behavior was discussed based on the experimental results such as friction coefficient, two dimensional and three dimensional worn surface profiles.