位置:成果数据库 > 期刊 > 期刊详情页
一个面向I/O密集型并行应用的性能模型
  • ISSN号:1000-1239
  • 期刊名称:《计算机研究与发展》
  • 时间:0
  • 分类:TP302[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]国防科学技术大学计算机学院,长沙410073
  • 相关基金:国家自然科学基金项目(40245023);计算物理国家重点实验室基金项目(51479040103KG0201)
中文摘要:

近几年,性能模型作为一种新的并行系统性能分析方法,得到学术界和工业界的广泛重视.给出了一个开放式性能模型框架结构PMPS(n)并实现了该框架下的一个面向I/O密集型并行应用模型PMPS(3),使用该模型分析了各种NPB程序在PⅣ机群系统上的性能.实验结果表明,对存储密集型应用,PMPS(3)模型与PERC模型预测结果相当;对I/O密集型应用性能的预测,PMPS(3)模型优于PERC模型.进一步分析发现,应用的数据相关、控制相关和操作重叠会影响模型预测结果.实验结果还说明了PMPS(n)性能模型具有很好的扩展性.

英文摘要:

High performance computing (HPC) is widely used in science and engineering to solve large computation problems. The peak performances of computers increase in a continuous and rapid way. But the sustained performances achieved by real applications do not increase in the same scale as the peak performances do and the gap between them is widening. Performance model of parallel systems, which is one of effective ways to solve this problem, draws the attentions of the research community as well as the industry community. In this paper, an open performance model infrastructure PMPS( n ) and a realization of this infrastructure-PMPS(3), a performance model of I/O-intensive parallel application, are given and used to perform NPB benchmarking on PIV cluster systems. The experiment results indicate that PMPS(3) can forecast better than PERC for I/O intensive applications, and can do as well as PERC for storageintensive applications. Through further analysis, it is indicated that the results of the performance model can be influenced by the data correlations, control correlations and operation overlaps. Then such factors must be considered in the performance models to improve the forecast precision. The experiment results also show that PMPS(n) has very good scalability.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机研究与发展》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院计算技术研究所
  • 主编:徐志伟
  • 地址:北京市科学院南路6号中科院计算所
  • 邮编:100190
  • 邮箱:crad@ict.ac.cn
  • 电话:010-62620696 62600350
  • 国际标准刊号:ISSN:1000-1239
  • 国内统一刊号:ISSN:11-1777/TP
  • 邮发代号:2-654
  • 获奖情况:
  • 2001-2007百种中国杰出学术期刊,2008中国精品科...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:40349