当前,多层次推断问题已成为我国在政府统计中推广抽样调查所面临的最大难题。本文回顾了现有解决多层次推断问题的方法,指出这些方法在使用上的限制;提出从改进估计的角度解决多层次推断问题,讨论了借助辅助信息改进估计的方法和建立统计模型进行推估的方法,并指出各种方法的优劣和适用情况;简要探讨了大数据背景下对解决多层次推断问题的一些启示。
Total estimation with multi-level has been the most troublesome problem in promoting sample survey in China's governmental statistics. This paper reviews the existing methods of solving the total estimation with multi - level, and point out the limitations of these methods. Then we propose some solutions from the perspective of improving estimation. This paper explores the methods of using auxiliary information to improve estimation and building statistical model for inference. Meanwhile, we points out the advantages, disadvantages and also the applications of those models. Finally, we discuss some enlightenments of solving total estimation with multi- level in the background of big data.