位置:成果数据库 > 期刊 > 期刊详情页
基于视觉注意模型和SIFT的交通标志识别方法
  • ISSN号:1673-9787
  • 期刊名称:《河南理工大学学报:自然科学版》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]河南理工大学计算机科学与技术学院,河南焦作454000
  • 相关基金:国家自然科学基金重大计划项目(90920006).
中文摘要:

为了提高交通标志的识别速度和识别率,提出了一种基于视觉注意模型和SIFT特征的交通标志识别方法.首先基于视觉注意模型提取颜色特征,找出交通标志可能的候选区域,然后对候选区域进行SIFT特征提取,与标准交通标志图像库进行相似度计算,可实现快速准确的检测与识别.与传统方法相比,具有无需精确分割、计算量小、体现仿生学特性等优点.在采自国内外的两组交通标志图像库上进行交通标志识别测试,都得到了良好的效果.

英文摘要:

In order to improve the speed and accuracy of traffic signs recognition (TSR) , a novel method based on a visual attention model and scale invariant feature transform (SIFT) feature is proposed. First, color features are extracted based on the visual attention model, and the candidate regions of traffic signs could be achieved. Then, SIFT feature of the candidate region is extracted, and the similarity calculation is done be- tween the candidate region and the standard traffic signs. Thus, the traffic sign would be recognized. The pro- posed method can recognize the traffic signs more rapidly and accurately than traditional methods, and it is characterized by no need for segmentation, less calculation, and bionics. The experiments results on two traffic signs databases collected from home and abroad show the excellent effect of the method on TSR.

同期刊论文项目
期刊论文 23 会议论文 23
同项目期刊论文
期刊信息
  • 《河南理工大学学报:自然科学版》
  • 北大核心期刊(2011版)
  • 主管单位:河南理工大学
  • 主办单位:河南理工大学
  • 主编:杨小林
  • 地址:河南省焦作市世纪大道2001号
  • 邮编:454000
  • 邮箱:zkxb@hpu.edu.cn
  • 电话:0391-3987253 3987068
  • 国际标准刊号:ISSN:1673-9787
  • 国内统一刊号:ISSN:41-1384/N
  • 邮发代号:
  • 获奖情况:
  • 河南省一级期刊,中文核心期刊,科技核心期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:4522