位置:成果数据库 > 期刊 > 期刊详情页
MOPSO算法及其在地下水监测网布局优化中的应用
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程] TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]中国科学院合肥智能机械研究所,合肥230031
  • 相关基金:国家自然科学基金(the National Natural Science Foundation of China under Grant No.60774096).
中文摘要:

在已有多目标粒子群优化算法(CMOPSO)研究和分析的基础上,为提高算法的聚合性和分布性,设计了一种新的精英档案维护及全局最优值选取策略,同时,使用动态全局最优值设置策略对原有算法的粒子速度更新公式进行扩展,以增强粒子的搜索能力,克服早熟现象。通过对疏勒河项目区地下水监测网空间布局多目标优化计算,表明该算法是求解大规模复杂多目标优化问题的一种有效手段。

英文摘要:

In this paper,an improved version of CMOPSO,ICMOPSO,is angle division to update archive and select the global best guide from posed to deal with the problem of premature convergence and diversity proposed.ICMOPSO adopts a novel strategy called particle archive.Moreover,a new particle updating strategy is promaintenance within the swarm.The algorithm is applied to solve muhi-objecitve layout optimization of groundwater monitoring network.The simulation performance indicates the effectiveness of the presented algorithm with regard to solving the large scale complex multi-objective optimization problem.

同期刊论文项目
期刊论文 32 会议论文 3
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887